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Abstract. We consider a mechanism for competing interactions in alternating Heisenberg spin
chains due to the formation of local spin-singlet pairs. The competition of spin-1 and spin-0
states reveals hidden Ising symmetry of such alternating chains.

1. Introduction

During the last few years mixed quantum spin chains have attracted some interest from
theorists. Exactly solvable versions with sophisticated Hamiltonians have been studied via
Betheansatz[1–3]. Very recently, numerical methods [4, 5] and matrix-product techniques
[6] have been applied to these spin systems. Different kinds of alternating chain with
XXZ-like interactions have been investigated by using finite-size calculations and conformal
invariance [7]. The subjects of interest in this paper are alternating spin chains, in which each
second site of the chain is considered as a compound, a kind of dumb-bell configuration.
Two dumb-bell spins 1/2 interact with each other via the Heisenberg interaction with a
coupling constantJ0, either ferromagnetically, or antiferromagnetically. Each first site of
the chain is occupied (A) by a usual quantum spin (we shall consider the cases of spin
1/2, 1, 3/2, 2), or (B) by a compound spin too (see figure 1). This spin is supposed to
be antiferromagnetically coupled (coupling constantJ1 < 0) to the spins of the nearest
dumb-bells. In spite of the short-range Heisenberg interactions, variations ofJ0 may result
in first-order transitions at zero temperature.

Realizations of such one-dimensional chains are shown in figure 1(a) and 1(b). The
Hamiltonian in case A can be written as

H(a) = −J1

∑
〈ρ,r〉

s(ρ) · (σ(r1)+ σ(r2))− J0

∑
〈r1,r2〉

σ(r1) · σ(r2) (1)

whereas in case B it becomes

H(b) = −J1

∑
〈ρ,r〉

(s(ρ1)+ s(ρ2)) · (σ(r1)+ σ(r2))

− J ′0
∑
〈ρ1,ρ2〉

s(ρ1) · s(ρ2)− J0

∑
〈r1,r2〉

σ(r1) · σ(r2). (2)

Except for one special case which is described by model B, we concentrate our efforts on
model A. The Hamiltonians in (1) and (2) can also be represented as follows:

H(a,b) = H1+H(a,b)

0 H1 = −J1

∑
〈ρ,r〉

S(ρ) · S(r) (3)

† On leave from: Landau Institute for Theoretical Physics, Chernogolovka, Moscow Region 142432, Russia.
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and

H
(a)

0 = −
1

2
J0

∑
r

S2(r) (4)

H
(b)

0 = −
1

2
J ′0
∑
ρ

S2(ρ)− 1

2
J0

∑
r

S2(r). (5)

When making transformations from Hamiltonians (1) and (2) to (4) and (5), we have
discarded irrelevant constant terms. The coordinates of the spins in the dumb-bells,r1
and r2, are replaced by a single coordinater (in model Bρ1 andρ2 are also replaced by
their common valueρ). Note that model B transforms into model A whenJ ′0→∞.
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Figure 1. Shown are chain fragments of lengthk = 4. Model A: spinss (= 1/2, 1, 3/2, 2)
occupy sitesρ, and spinsσ are arranged in dumb-bells. Model B: spinss are in dumb-bells,
too, which are shown orthogonal to theσ -dumb-bells.

The two spins,σ(r1) and σ(r2), are incorporated into thecompoundspin: S(r) =
σ(r1)+σ(r2), which is either 0, or 1. This reveals a hidden Ising symmetry of the original
Heisenberg models (1) and (2). In fact, HamiltonianH1 does not generate any transitions
between the total spin states 0 and 1 of any compound spin. Thus we can introduce spin-0
states on (some)r-sites which are a type of intrinsic ‘defect’. Governed by theJ0-terms,
these ‘defects’ regulate a separation of the original chain into an ensemble of finite chain
fragments decoupled from each other. Their structure can be defined as follows: a chain
fragment of lengthk (k > 1) consists ofk+1 spinss andk spins 1. The spins of these two
groups alternate with each other. A chain fragment can be formally described as(s, 1)ks.
Chain fragments are isolated from each other by spins 0.

For convenience, we enumerate the lattice sitesr with integer numbers, and half-integers
are reserved for sitesρ.

All of the energies are suitably measured in units ofJ1 which is supposed to be negative.
Thus, we setJ1 = −1. Below we shall determine the phase diagram of the chains with
s = 1/2, 1, 3/2, 2 depending on the parameterJ0 in model A, and bothJ0 andJ ′0 in model
B.

Our analysis includes elements of a rigorous analytical approach, a linear programming
method, and numerical methods. Here we use the density matrix renormalization group
(DMRG) method [8, 9] which is most appropriate to our problem.

A detailed description of the DMRG algorithm which we have used to compute ground-
state energies of finite open chains can be found in appendix A. It was implemented in C++
and ran on a SUN UltraSparc 2 workstation with two 167 MHz processors and 256 Mbyte
memory. In order to achieve the desired accuracy, we kept up toN = 100 block states
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during each DMRG step. The whole project consumed about 400 hours of CPU time. No
parallelization was used.

2. The ground-state problem. Model A

For convenience, we include into the definition of a chain fragment of lengthk a spin-0
state, say, from its right. Then a chain fragment of lengthk is represented by(s, 1)k(s, 0).
This classification needs the ‘empty’ chain fragments to be included: any of these ‘empty’
fragments is spins with spin 0, attached from its right, i.e.(s, 0). Conventionally, a nearest
spin from the left of any chain fragmentis also 0, but it is incorporated into the nearest-
from-the-left chain fragment.

Let us suppose that we have succeeded in determining the ground-state energies of
HamiltonianH1 for all finite chain fragments, i.e.{ε0, ε1, ε2, . . . , εk, . . .}. Then, the contrib-
ution ofH(a)

0 will be −kJ0 for the chain fragment of lengthk. The ground-state energy (per
compound spin) of the chain, consisting ofN0 ‘empty’ chain fragments,N1 chain fragments
of length 1, . . ., andNk chain fragments of lengthk, etc, is

Eg.s =
∑
k>0

(εk − kJ0)wk. (6)

In (6) we introduced the ‘probabilities’wk = Nk/N , k > 0, withN being the total number
of compound spins. ExpressingN in terms of the numbersNk of the various chain fragments
is equivalent to the constraint

1=
∑
k>0

(k + 1)wk (7)

imposed on the set of ‘probabilities’. Of course, all of thewk are non-negative. Equations
(6) and (7) constitute a linear programming problem which demands that extrema of the
energy (6) should be searched for at the vertices of the polygon defined by (7). This
method has been efficiently applied to the problem of competitive interactions, leading to
complex modulated structures [10–13]. For this particular problem, it can be easily proven
that each vertex is characterized by only one non-zero ‘probability’ value. For example,
the vertex withw0 = 1 corresponds to the perfect structure with the periodicity element
(s, 0), its energy beingE = 0 (we denote this regular spin configuration by〈0〉); and
w1 = 1/2 (a configuration conventionally denoted by〈1〉) corresponds to the periodicity
element(s, 1, s,0) with energyE = (ε1 − J0)/2. For the〈k〉 state,Nk = N /(k + 1)
and the periodicity element can be represented as ((s, 1)k, s,0). The energy of this spin
configuration is given by

Ek = (εk − kJ0)/(k + 1). (8)

Numerical methods which are outlined in appendix A allow us to analyse characteristic
first-order transitions. They happen at zero temperature and are controlled byJ0. For
s = 1/2 the set of energies{εi} is given in table 1 (left-hand column). According to the
Lieb–Mattis theorem, a ferrimagnetic ground state would be realized with a total spink/2,
if we dealt with a periodic alternating chain, consisting ofk spins 1/2 andk spins 1, coupled
antiferromagnetically. In our case, a chain fragment withk spins 1 andk+1 spins 1/2 will
exhibit the total spinSk = (k − 1)/2 (k > 1) in the ground state. Low-lying excitations
are asymmetric. Their hierarchy is as follows: the lowest excitations are triplets which
correspond to1S = −1, or the total spin(k − 3)/2 (k > 3). The next-lowest excitations
are triplets too, but with1S = +1 (the total spin is(k + 1)/2). The singlet excitations are
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Table 1. The ground-state energies ofH1 and the functioneint(k) for the chain fragments,
consisting ofk spins 1 andk + 1 spinss, 1/2, 3/2 and 2 in three successive columns.

s = 1/2 s = 3/2 s = 2

k εk eint(k) εk eint(k) εk eint(k)

0 0 0.453 733 0 0.150 038 0 0.111 298
1 −2 −0.092 173 −4 0.011 951 −5 0.005 167
2 −3.381 5016 −0.019 581 −7.872 7492 0.001 114 −9.898 7531 0.000 282
3 −4.819 1715 −0.003 157 −11.735 772 0.000 003−14.792 914 −0.000 009
4 −6.270 5355 −0.000 426 −15.597 742 −0.000 054 −19.686 790 −0.000 017
5 −7.724 2539 −0.000 051 −19.459 627 −0.000 026 −24.580 654 −0.000 012
6 −9.178 3024 −0.000 005 −23.321 522 −0.000 009 −29.474 518 −0.000 007
7 −10.632 391 0.000 000−27.183 429 −0.000 003 −34.368 384 −0.000 004
8 −12.086 485 0.000 000−31.045 338 0.000 000−39.262 251 −0.000 003
9 −13.540 579 0.000 000−34.907 251 0.000 000−44.156 119 −0.000 002

10 −14.994 673 0.000 000−38.769 163 0.000 000−49.049 987 −0.000 001

1 2 3 4 5 6 7 8

e (m)
int

m

-0.1

0.1

0.2

0.3

0.4

0.5

Figure 2. Shown are a few first points ofeint(m) (model A, s = 1/2).

lying above both triplet excitations. Only the triplet excitations with1S = −1 will give
rise to a gapless mode in the limitk→∞.

Comparison of the ground-state energy expressions (8) at various vertices clearly shows
that three configurations are competitive in the global ground state: this is〈0〉 for J0 < −2,
which changes to〈1〉 for −2 < J0 < 2e∞ + 2 ≈ −0.910. Beyond this region, i.e. for
−0.910< J0, the 〈∞〉 state becomes energetically favourable. The numerical data for the
set{εk} can be represented as

εk = ke∞ + e0+ eint(k) (9)

where e∞ ≈ −1.454 12 is the energy per element (s, 1, s) of the perfect periodic spin
structure〈∞〉 ≡ (s, 1)∞, s = 1/2. The energy due to the open ends ise0 ≈ −0.453 52,
and the remaining part,eint(k), can be interpreted as the interaction between the chain
fragment ends which apparently tends to zero fork → ∞. This function eint(k) plays
an important role in establishing the succession of phase transitions. In appendix B we
perform a rigorous analysis, according to whicha succession is given by a broken line,
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Figure 3. Shown are two subsets ofeint(m) for m odd and even. The points form = 2 and
m = 0 are situated far below at−0.4056 and−1.2086, respectively.eint(2k + 1) of model B
coincides witheint(k) of model A.

which is concave upwards and envelopseint(k) from below. This broken line includes the
points corresponding to periodic structures with the shortest chain fragment (k = 0 in model
A) and infinitely long chain fragments,k→∞.

For s = 1/2, eint(k) is shown in figure 2. Thus, the energetically favourable config-
urations can be〈0〉, 〈1〉 and〈∞〉.

For s = 1, the functioneint(k) is the upper curve in figure 3, related to the odd integers
m = 2k + 1. According to appendix B we have successive phase transitions

〈0〉 → 〈1〉 → 〈2〉 → 〈3〉 → 〈∞〉
at J (0,1)0 = −3, J (1,2)0 = −2.660 425,J (2,3)0 = −2.582 746, andJ (3,∞)0 = −2.577 340,
which are determined from equation (8) and the data of table 2 (right-hand column). In
accordance with the Lieb–Mattis theorem, the value of the spin of the ground state of a
chain fragment isSk = 1, independently of the length.

For s = 3/2, the total spin in the ground state isSk = (3+ k)/2, whereas fors = 2,
Sk = k + 2. A succession of phase transitions can be easily identified by making use of
table 1 (middle and right-hand columns). It is the same in these two cases:

〈0〉 → 〈1〉 → 〈2〉 → 〈3〉 → 〈4〉 → 〈∞〉.
The last two transitions occur atJ (3,4)0 andJ (4,∞)0 whose values slightly differ fromJ (2,3)0 .

Note that a transformation〈0〉 → 〈∞〉 via a few intermediate first-order transitions
proceeds due to quantum effects. In fact, ifH1 is confined to a pure Ising form, then
eint(k) ≡ 0. The system undergoes a direct transition〈0〉 → 〈∞〉 at J0 = −2s. A
transition point is highly degenerate: chain fragments of any length are allowed as well as
any sequence of them.
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Table 2. The ground-state energies ofH1 and the functioneint(k) for the chain fragments,
consisting of spins 1. For model B, the data of the computations are given in the left-hand
(right-hand) column for chain fragments of even (odd) total lengths, 2k (2k+ 1). For model A,
only the numerical data in the right-hand column should be used.

ε2k+1 eint(2k + 1)
k ε2k eint(2k) or εk or eint(k)

0 0 −1.208 0 0.193 484
1 −2 −0.405 032 −3 −0.003 548
2 −4.645 7513 −0.247 815 −5.830 2125 −0.030 792
3 −7.370 2750 −0.169 371 −8.634 5320 −0.032 144
4 −10.124 637 −0.120 765 −11.432 932 −0.027 575
5 −12.894 560 −0.087 720 −14.230 359 −0.022 035
6 −15.674 010 −0.064 202 −17.028 266 −0.016 973
7 −18.459 853 −0.047 076 −19.827 036 −0.012 775
8 −21.250 218 −0.034 473 −22.626 683 −0.009 455
9 −24.043 879 −0.025 167 −25.427 099 −0.006 902

10 −26.839 978 −0.018 298 −28.228 140 −0.004 975
11 −29.637 889 −0.013 240 −31.029 675 −0.003 542
12 −32.437 147 −0.009 530 −33.831 576 −0.002 474
13 −35.237 402 −0.006 818 −36.633 771 −0.001 701
14 −38.038 394 −0.004 842 −39.436 175 −0.001 138
15 −40.839 927 −0.003 407 −42.238 735 −0.000 730

In contrast to this, a spin-wave approach ‘overestimates’ quantum effects fors > 3/2:
eint(k) of the spin-wave approach may not differ much from the numerical data, but for
s > 3/2 it always decays monotonically withk and thus would lead always to an infinite
set of first-order transitions

〈0〉 → 〈1〉 → · · · → 〈k〉 → · · · → 〈∞〉.
Exceptional is the case ofs = 1/2 for which the spin-wave approach exhibits a global
minimum of eint(k) at k = 1. This results in the same succession of transitions,
〈0〉 → 〈1〉 → 〈∞〉, as obtained within the exact numerical scheme.

3. The ground-state problem. Model B

The subject of this section is model B, whereσ ands are both spins 1/2; thus the equivalent
model described by Hamiltonian (3) deals with chain fragments consisting of compound
spins 1 only. The ground-state energies and excitations of finite spin-1 chains described
by HamiltonianH1 have been studied by Kennedy [14] in the framework of the Lanczos
method.

It is more suitable to enumerate the chain by integers, sayodd and evenfor ρ- and r-
sites, respectively. Our consideration can be restricted toJ ′0 > J0. Relation (9), which can
be used for spin-1 chain fragments as well, is apparently not identical for chain fragments
consisting of even or odd numbers of sites. This does not concerne∞, whose value is
common to both types of chain fragment, but concernse0 [15] and eint(k). The total spin
in the ground state is zero or one; it depends on the length of the chain fragments, even or
odd.

The linear programming method will be used again to select those chain fragments which
may be candidates to form the ground state. The following four types of fragment should
be taken into consideration:(12k+1, 0)r , (12k+1, 0)ρ , (12k, 0)r , and (12k, 0)ρ . We denote
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their total numbers asN(r)

2k+1, N
(ρ)

2k+1, N
(r)

2k , andN(ρ)

2k , respectively, and the corresponding

‘probabilities’ asw(r)2k+1, w
(ρ)

2k+1, w
(r)

2k , andw(ρ)2k , e.g.w(r)2k+1 = N(r)

2k+1/N . HereN is the total
number of sites of both types,r and ρ. As in the prior consideration, a spin-0 state is
attached from the right to any finite spin-1 chain fragment. Indicesr andρ specify the type
of the rightmost site, which is occupied by spin 0. Certainly, this definition incorporates
‘empty’ chain fragments 0r and 0ρ into the scheme. Not all of the numbersN mentioned
above are independent, e.g. the leftmost sites of(12k, 0)r and (12k+1, 0)ρ are both of the
r-type. They evidently follow all of those chain fragments which have a rightmost site of
type ρ. Thus, the following ‘conservation law’ holds:∑

k

(N
(r)

2k +N(ρ)

2k+1) =
∑
m

N(ρ)
m

which yields ∑
k

w
(r)

2k =
∑
k

w
(ρ)

2k . (10)

The total number of lattice sitesN expressed in terms ofN(r) andN(ρ) gives rise to the
equation

1=
∑
k>0

(2(2k + 1)w(r)2k + (2k + 2)(w(ρ)2k+1+ w(r)2k+1) (11)

and the energy per site is

E =
∑
k

(2(ε2k − kJ ′0 − kJ0)w
(r)

2k + (ε2k+1− (k + 1)J ′0 − kJ0)w
(r)

2k+1

+ (ε2k+1− kJ ′0 − (k + 1)J0)w
(ρ)

2k+1. (12)

In this equation we should use the energiesεm given in table 2. Note that the set{ε2k+1}
coincides with{εk} used in model A.

As we have assumedJ ′0 > J0, the contribution of chain fragments(12k+1, 0)ρ to the
energy is not competitive with the one for the(12k+1, 0)r fragments; see equation (12).
Thus, in the problem of finding the ground-state energy, we must check the contribution of
two sorts of vertex. The first kind is defined asw(r)2k = w(ρ)2k = 1/(4k + 2) with energy

E2k = 1

2k + 1
(ε2k − kJ ′0 − kJ0). (13)

For the second kind we getw(r)2k+1 = 1/(2k + 2) and the energy reads

E2k+1 = 1

2k + 2
(ε2k+1− (k + 1)J ′0 − kJ0). (14)

We shall denote the corresponding regular structures as〈〈2k〉〉 and〈〈2k+1〉〉 in accordance
with the numbers of spin-1 sites in the chain fragments. Note that in the second case the
periodicity is 2k + 2, whereas in the first case it is 4k + 2. Expressions (13) and (14) can
be rewritten as

Em = 1

m+ 1

(
εm −mJ

′
0 + J0

2
− θmJ

′
0 − J0

2

)
(15)

whereθm = 0 or 1 form even or odd. Except for the last term in the r.h.s., equation (15)
has a form similar to equation (8).

Shown in figure 3 iseint at J ′0 = J0. If, however, J ′0 > J0, then the subset
{eint(m, even)} increases as compared with{eint(m, odd)}. Having figure 3 as a prerequisite,
we can describe all possible transformations as a function ofJ ′0 − J0.
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(i) As long aseint(0) remains beloweint(7), which is the absolute minimum of the
{eint(m, odd)} subset, our system only undergoes the〈〈0〉〉 → 〈〈∞〉〉 transition.

(ii) If eint(0) rises aboveeint(7), but remains below the continuation of the straight line
connecting the points atm = 5 and atm = 7, then two transitions〈〈0〉〉 → 〈〈7〉〉 → 〈〈∞〉〉
take place.

(iii) Next, if eint(0) rises above the continuation of the line connecting the points at
m = 5 andm = 7, but remains below the continuation of the line connecting the points at
m = 3 andm = 5, then the three transitions〈〈0〉〉 → 〈〈5〉〉 → 〈〈7〉〉 → 〈〈∞〉〉 take place.

(iv) The scheme can be continued.
(v) Finally, at sufficiently largeJ ′0−J0, we get a maximal possible number of first-order

transitions:〈〈0〉〉 → 〈〈1〉〉 → 〈〈3〉〉 → 〈〈5〉〉 → 〈〈7〉〉 → 〈〈∞〉〉.
The phase diagram is shown in figure 4.

-3.1 -3 -2.9

0

-2.8 -2.7 -2.6 -2.5

J

-0.3

-0.2

-0.1

0

0.1

0

0.2

0.3

J’

<<0>>

<<1>> <<3>> <<5>> <<oo>>

Figure 4. The phase diagram for model B is shown in the (J0,J ′0) plane. A narrow area
between〈〈5〉〉 and 〈〈∞〉〉 belongs to the〈〈7〉〉 phase. The line, which separates the〈〈0〉〉 phase
from the others, changes its slope from−1 through−3/4, −2/3, −1/2 to 0.

4. Discussion and conclusions

The model considered in this paper is probably the simplest representative of the family of
Heisenberg models which possess the intrinsic property of a hidden Ising symmetry. The
compound spins of our model form a regular sublattice within a one-dimensional chain:
We have considered only the case of alternating chains; however, any periodicity within a
system of compound spins is allowed.

We have restricted ourselves to the compound spin values 0 and 1. In principle, a more
complex construction for compound spins can be used, i.e. instead of dumb-bells, three spins
1/2 may form a triangle. Then a compound spin is allowed to be 3/2 and 1/2. A treatment of
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this case is more difficult, because all possible modulations in a distribution of spins 3/2 and
1/2 should be considered within the ensemble of infinite chains; there are no spin-0 breakers
like in the models of this work. Another possibility would be associated withσ constituents
of compound spins of a higher value than 1/2, say 1. Then, increasingJ0 from large negative
values to moderate negative ones, we could pass through a few regimes, starting from a
periodic structure of elements(s, 0) through a few structures whose periodicity elements
are ((s, 1)k, s,0) to (s, 1)∞, then, most likely, a few intermediate structures(s, 2)k, s,1 will
finally lead to a perfect(s, 2)∞ chain. However, the analysis of the phase diagram between
perfect(s, 1)∞ and(s, 2)∞ structures is somewhat difficult because of the absence of spin-0
breakers.

For dealing with these more complicated systems, one could use a spin-wave approach,
although it is tedious for finite systems, but well defined. We have employed this approach
in order to compare our ‘exact’ numerical results with this approximate analytical scheme.
For s = 1/2 these two schemes qualitatively lead to the same global minimum ofeint(k)

at k = 1, thus exhibiting the identical succession of transitions. We have observed that
for s > 3/2, eint(k) is always a monotonically decreasing function. This means that the
occurrence of a negative minimum ineint(k) should be due to non-linear terms of a spin-
wave expansion. It is clearly seen from table 1 that this minimum is extremely small
(∼10−4eint(0)) even ats = 3/2 or 2, but it exists and has an important influence on the
succession of phase transitions versusJ0. As this minimum occurs atk = 4, which is a
rather short length, and thus is well controlled numerically, we are absolutely sure of the
existence of the minima. The data obtained from the spin-wave approach are given in table
3. Evidently they do not differ much from our ‘exact’ numerical results, decreasing very
rapidly with k. Exceptional is thes = 1 case, whereeint(k) decreases slowly, as within the
‘exact’ numerical scheme, although monotonically.

Table 3. The spin-wave approximation. The ground-state energies of HamiltonianH1 and the
function eint(k) for the chain fragments, consisting ofk spins 1 andk + 1 spinss, 1/2, 3/2, and
2, are shown in three successive columns.

s = 1/2 s = 3/2 s = 2

k εk eint(k) εk eint(k) εk eint(k)

0 0 0.370 671 0 0.184 008 0 0.131 569
1 −2 −0.192 873 −4 0.012 081 −5 0.004 480
2 −3.292 8932 −0.049 311 −7.837 7223 0.002 433 −9.876 8944 0.000 497
3 −4.693 7567 −0.013 719 −11.667 585 0.000 644−14.750 229 0.000 073
4 −6.120 3597 −0.003 866 −15.496 108 0.000 194−19.623 201 0.000 012
5 −7.554 0280 −0.001 079 −19.324 313 0.000 063−24.496 123 0.000 002
6 −8.989 7014 −0.000 297 −23.152 429 0.000 022−29.369 036 0.000 001
7 −10.425 941 −0.000 081 −26.980 516 0.000 008−34.241 947 0.000 000
8 −11.862 337 −0.000 022 −30.808 595 0.000 003−39.114 859 0.000 000
9 −13.298 777 −0.000 006 −34.636 671 0.000 001−43.987 770 0.000 000

10 −14.735 228 −0.000 002 −38.464 745 0.000 000−48.860 681 0.000 000

We suppose that this important property ofeint(k) exhibiting a minimum, more and
more shallow, will be valid for largers-values, too, but we cannot say definitely whether
the minimum persists at finitek-values or shifts tok→∞.

The next article in this series, which will be published elsewhere, is devoted to the
thermodynamics of mixed Heisenberg chains. Certainly, all of the transitions will be
smeared out due to thermal fluctuations. However, the system must show big changes
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in the physical properties, such as the specific heat and the magnetic susceptibility, ifJ0

is in a transitional area. In fact, as the chain fragments of finite lengths possess total non-
zero spins, which do not interact with spins of the nearest chain fragments, they form a
system of paramagnetic spins. Thus, the susceptibility will exhibit a Curie-like behaviour at
low temperatures. The prefactor will be temperature dependent, too, because the values of
paramagnetic spins and their concentrations strongly correlate with the length distribution
of the chain fragments.

We illustrate this by taking an example from the forthcoming article. Let us consider
model A with s = 1/2 andJ0 ≈ −2, i.e. where only the chain fragments(s, 1, s,0) and
(s, 0) are competitive. The former is practically in a singlet state, while the latter represents
a purely paramagnetic spin 1/2; their concentration in a lattice varies withT as

1

2

1+√1+ 4w

1+ 4w +√1+ 4w
w = exp(J0+ 2)/T .
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Appendix A

To calculate the ground-state energies of the finite chain fragments(S1, S2)
kS1 we used a

slightly modified version of the well-known density matrix renormalization group (DMRG)
method introduced by White [8, 9]. Here we give a brief sketch of this method.

Let us consider the following finite fragment, which consists of three spin-S1 sites and
two spin-S2 sites:

S1 S2 S1 S2 S1

i1 i2 i3 i4 i5
. (A1)

Each box denotes a single-spin Hilbert space with basis states numbered with the
corresponding indexiν in the lower row. For the moment,i1, i3, and i5 are identical,
as arei2 and i4. The Hamiltonian for the chain (A1) can be divided into the following
contributions:

H = HB
i1,j1
+HB

i5,j5
+HS2

i2,j2
+HS2

i4,j4
+HS1

i3,j3

+ HBS2
i1i2,j1j2

+HBS2
i5i4,j5j4

+HS1S2
i3i2,j3j2

+HS1S2
i3i4,j3j4

. (A2)

The first five terms are on-site contributions; the others couple neighbouring sites. At this
stage,HB,HBS2 are identical toHS1, HS1S2, respectively.

The first step of the algorithm now is to compute the lowest eigenvalue of the
Hamiltonian (A2) and the corresponding eigenstate by using the Lanczos method. The
eigenvalue is directly the ground-state energyε2 of the fragment(S1, S2)

2S1, and the
corresponding eigenstateφi1i2i3i4i5 serves as the ‘target state’ of the subsequent DMRG step.
From this target state we calculate the density matrix for the combinedi1i2 Hilbert space:

ρi1i2,j1j2 =
∑
i3,i4,i5

φi1i2i3i4i5φj1j2i3i4i5. (A3)
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Clearly, the eigenvectors ofρ corresponding to the largest eigenvalues give the most
important contributions to the target stateφi1i2i3i4i5. The idea of the DMRG method is
to reduce the dimension of thei1i2 Hilbert space by projecting all of the operators onto the
eigenstates ofρ belonging to theN largest eigenvalues. LetU be the rectangular matrix
that contains theseN normalized eigenvectors as columns [16]. This matrixU allows us
to combine the Hilbert spacesi1 andi2 into a new single Hilbert spacei ′1 while limiting its
dimension to at mostN . All operatorsA acting oni1i2 are transformed into operatorsA′

acting oni ′1 via

A′ = UAU †. (A4)

We then arrive at the situation

S1S2 S1 S2S1

i ′1 i3 i ′5
. (A5)

Note thati ′5 is the reflected version ofi ′1. The length of the chain can now be increased by
inserting an(S1, S2) pair, yielding

S1S2 S1 S2 S1 S2S1

i ′1 i ′2 i ′3 i ′4 i ′5
(A6)

where we have renamedi3 asi ′2. The Hamiltonian for the chain (A6) again has the structure
(A2), but with interchanged roles ofS1 andS2, and new operators

HB
new= U

[
HB ⊗ 1+ 1⊗HS2 +HBS2

]
U †

HBS1
new =

∑
ν

(U
[
1⊗ Bν]U †)⊗ Aν (A7)

provided that the original interaction is given by

HS1S2 =
∑
ν

Aν ⊗ Bν. (A8)

This completes the DMRG step. The Lanczos method is now applied to the new full
Hamiltonian for chain (A6); the lowest eigenvalue gives the energyε3 of the chain fragment
(S1, S2)

3S1, and the corresponding eigenvector serves as the target state for the subsequent
DMRG step.

The algorithm described above is a straightforward generalization of the standard
‘infinite-system method’ of White [8] to alternating symmetric spin chains. It differs from
the original algorithm in two points: (1) it contains an additional spini3 in the centre
of the chain; and (2) the role ofS1 and S2 has to be interchanged at every DMRG step.
We did not use the extended ‘finite-system method’, as agreement with competing pure
Lanczos calculations was already satisfactory and could be systematically increased by
using largerN .

Appendix B

In this appendix we show how a succession of first-order transitions takes place. We start
by noting that the〈0〉 structure is optimal whenJ0 has a large negative value and the〈∞〉
phase is realized at large positiveJ0.

Let us define theJ0-parameter asJ (m,n)0 , when two phases,〈m〉 and 〈n〉, are at equil-
ibrium, i.e., Em = En. Then we can employ representation (9) to determine the following
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equations:

e∞ − J (k−1,k)
0 − e0 = (k + 1)eint(k − 1)− keint(k) (B1)

e∞ − J (k,k+1)
0 − e0 = (k + 2)eint(k)− (k + 1)eint(k + 1). (B2)

From equations (B1) and (B2) we obtain

J (k,k+1)
0 − J (k−1,k)

0 = (k + 1)(eint(k + 1)− 2eint(k)+ eint(k − 1)). (B3)

Thus, we come to thefirst conclusion: ifeint(k) is concave upwards at anyk, we have
a full succession of transitions:〈0〉 → 〈1〉 → 〈2〉 → · · · → 〈∞〉.

Suppose now that the condition foreint(k) does not hold. For instance, if for 0< j < m

eint(k + j) satisfies the inequalities

eint(k + j) > eint(k)+ j

m
(eint(k +m)− eint(k)) (B4)

then a generalization of equations (B1) and (B2) is

J (k,k+j)0 = e∞ − e0− eint(k)+ k + 1

j
(eint(k + j)− eint(k)). (B5)

Taking into account inequalities (B4), one simply obtainsJ (k,k+j)0 > J (k,k+m)0 . These
last inequalities show that all intermediate phases whose ‘energies’eint(`) are above the
enveloping line cannot be realized as ground states at any value ofJ0. An important
consequence is that ifeint achieves an absolute minimum at somek, this results in a direct
transition〈k〉 → 〈∞〉. A convenient expression for the critical valueJ (k,∞)0 can be derived
from (B5):

J (k,∞)0 = J (k−1,k)
0 + (k + 1)(eint(k − 1)− eint(k)). (B6)
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